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Continuous wave lasers have traditionally been used for atomic slowing, cooling, and internal state manipulation. The use of ultrafast laser U Itr f t Q b .t M n Iat OnS
pulses opens new possibilities for controlling both the internal and the external atomic degrees of freedom. We study this using a a aS u I a Ipu I
picosecond, modelocked laser tuned on resonance with atomic transitions in trapped cadmium ions. Here, we present a series of e T
experiments, including observation of optical Rabi oscillations on a picosecond time scale, ultrafast coherent control of hyperfine qubit =0 s o, % o,
superpositions, precision measurement of excited state lifetimes, and a demonstration of broadband laser cooling. E F=1 ® o ® o ® o
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We consider a resonant excitation where the pulsed laser center frequency is tuned to the optical transition in the ion. ;' PS . ° ° . ° .
By applying a series of spin-dependent kicks, a quantum phase gate can be realized on a pair of trapped ions. The kick X X H T °
amplitudes and times should satisfy the condition that the motional state of the ions is preserved at the end of the pulse © © ,:' _y uwaves F=0 02 1 @ o ° o ° o
sequence, while a non-zero phase is acquired. In the example shown to the right, the two qubit states are the 2965 nm ! 14 5 GH B ® o © o ® °
Zeeman levels of S. _ F=1 hyperfine manifold of a ''Cd" ion. A c*-polarized pulse would couple the |1,-1> state | / S ' z ) o o0 o0 o
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to the excited P ate, while the |1, 1> state will not be affected. To avoid decoherence due to spontaneous !
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emission from the P state, a pair of counterpropagating ps pulses should be applied, separated by much less , F
than the excited state lifetime, which would return the ion to the ground state, resulting in a spin-dependent —_— '.' \ | | Bhase [deg] | |
momentum kick of 2hk. |0 0> " has o The ion starts in a superposition of two ground states. A Ramsey fringes with no pulsed laser interaction (circles), only an ex-
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Ramsey fringe without the laser pulses is due to the qubit frequency
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We perform precision measurements of the excited state lifetime of the 5p 2P, and the 5p 2P, levels of a single trapped Cd* ion. The ion is excited with 02 L For more information on this latter part, see the
picosecond laser pulses from the mode-locked laser and the distribution of arrival times of the subsequent spontaneously emitted photons is recorded. poster by Peter Maunz, also presenting In this
With this technique, we are able to eliminate prevalent systematic errors, such as: pulse pileup, radiation trapping, flight from view, subradiance or session.

superradiance, and by using ultrafast laser pulses, eliminate potential effects from applied light during the measurement interval. These results are not only O-OO 0 0.5 10 15 50 55
the most precise measurements to date for these levels, but with absolute uncertainties of order 10 ps, are among the most precisely measured excited ' ' : : : :

state lifetimes in any atomic system. Additionally, this technique has the potential to achieve ~100 ppm precision. VPower[VmW]
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goodness of our fit.



